:: The Journal of the Institute of Internet, Broadcasting and Communication ::, Vol.22 No.3 | (2022) pp.125~132

WEB 기반 질병 예측 시스템

YouSik Hong

(종신회원, 상지대학교 정보통신 SW공학과)

Y. H. Han

(종신회원, 상지대학교 인공지능 융합공학부)

W. B. Lee

(종신회원, 상지대학교 정보통신 SW공학과)

Abstract

코로나바이러스 감염은, 21세기, 아무리 현대 의학이 발전하였지만, 특별한 약이나 치료제가 없는 매우 난감한 상황이다. 그러므로, 세계 여러 나라에서, 코로나바이러스를 일차적으로 간단하게 파악하기 위해서, 유동 인구가 많이 이동하는 기차역, 버스터미널, 공항 터미널에는 발열 측정용 적외선 카메라가 설치하고, 이른 시간에 비접촉식 체온계를 사용해서, 37.5 도 이상의 고열로 분류되면, 코로나바이러스 감염 의심 환자로 1차 판단하고 있다. 그러나, 발열 측정 적외선 체온계는 체온측정 신뢰도가 75- 80% 정도이므로, 신뢰도를 높이는 방안을 간구해야만 된다는 지적이 많이 나 오고 있다. 본 논문에서는, 이러한 문제점을 해결하기 위해서, 적외선 체온측정 신뢰도를 향상하게 시키기 위해서, 체온 조건, 기침 조건, 혈압 조건, 당뇨 조건, 산소포화도 조건, 맥진 조건, 설진 조건을 이용해서, 기계학습 기반 및 fuzzy 추론 기반, 코로나바이러스 감염조건 위험도를 예측하는 알고리즘을 제안하고 모의실험 하였다.
The Ministry of Environment recently analyzed the output data of 10 fine dust measuring stations and, as a result, announced that about 60% had an error that the existing atmospheric measurement concentration was higher. In order to accurately predict fine dust, the wind direction and measurement position must be corrected. In this paper, in order to solve these problems, fuzzy rules are used to solve these problems. In addition, in order to calculate the fine particulate sensation index actually felt by pedestrians on the street, a computer simulation experiment was conducted to calculate the fine particulate sensation index in consideration of weather conditions, temperature conditions, humidity conditions, and wind conditions.
  Disease diagnosis theory,Fuzzy inference system,Decision tree

Download PDF List