:: The Journal of the Institute of Internet, Broadcasting and Communication ::, Vol.22 No.3 | (2022) pp.93~98

가상화 환경에서 고속 스토리지를 위한 워크로드 맞춤형 페이지 크기 모델링

Hyokyung Bahn

(정회원, 이화여자대학교 컴퓨터공학과)

Yunjoo Park

(정회원, 이화여자대학교 컴퓨터공학과)


최근 옵테인 등 고속 스토리지의 출현으로 하드디스크에 적합하게 설계된 메모리 시스템 설정에 대한 재고가 필요한 시점에 이르렀다. 본 논문에서는 고속 스토리지의 탑재에 따라 페이지 크기가 메모리 시스템의 성능에 어떠한 영향을 미치는지를 분석하고, 가상화 환경에서 워크로드 상황에 맞게 페이지 크기를 설정할 수 있는 모델을 설계하였다. 전통적인 시스템의 경우 워크로드 별로 페이지 크기를 설정하는 것이 쉬운 일이 아니지만 최근 클라우드 환경의 활성화 로 개별 워크로드 수행을 위해 별도의 가상머신이 생성되므로 가상머신이 시작될 때 해당 가상머신의 페이지 크기를 결정할 수 있어 제안한 모델의 효용이 높을 것으로 기대된다. 다양한 가상머신 시나리오에 대한 시뮬레이션 실험을 통해 제안한 모델이 워크로드 상황에 맞게 페이지 크기를 설정하여 메모리 접근 시간을 크게 개선함을 보인다.
Recently, fast storage media such as Optane have emerged, and memory system configurations designed for disk storage should be reconsidered. In this paper, we analyze the effect of the page size on the memory system performances when fast storage is adopted. Based on this, we design a page size model that can guide an appropriate page size for given workloads in virtualized environments. Configuring different page sizes for various workloads is not an easy matter in traditional systems, but due to the widespread adoption of cloud systems, page sizing performed in our model is feasible for virtual machines, which are generated for executing specific workloads. Simulation experiments under various virtual machine scenarios show that the proposed model improves the memory access time significantly by configuring page sizes for given workloads.
  Page size,NVM,cloud,virtual machine,memory access time,fast storage

Download PDF List