:: The Journal of the Institute of Internet, Broadcasting and Communication ::, Vol.24 No.5 | (2024) pp.61~67
BERT를 이용한 협업 필터링 강화 추천 시스템
Abstract
최근 인공지능과 딥러닝 기술은 크게 발전하였으며, 그 중에서도 BERT 모델은 트랜스포머 아키텍처를 기반으로 한 자연어 처리 분야에서 문맥 이해 능력이 뛰어나다는 평가를 받고 있다. 이러한 성능은 전통적인 추천 시스템을 한 단계 더 발전시킬 수 있는 잠재력을 지니고 있다. 본 연구에서는 추천 시스템의 성능 향상을 위해 협업 필터링 방식에 딥러닝 모델을 결합하는 접근 방식을 채택하였다. 구체적으로, BERT를 활용해 사용자 리뷰의 감정 분석을 수행하고, 이러한 리뷰 감정을 기반으로 사용자를 임베딩함으로써 유사한 취향을 가진 사용자를 찾아내어 추천하는 시스템을 구현 하였다. 또한 이 과정에서 오픈소스 검색 엔진인 Elasticsearch를 활용하여 빠른 검색, 추천 결과를 검색할 수 있다. 사용자의 텍스트 데이터를 분석하여 추천의 정확도와 개인화 수준을 높이는 접근 방식은 향후 다양한 온라인 서비스에서 의 사용자 경험 개선에 중요한 역할을 할 것이다.
In recent years, artificial intelligence and deep learning technologies have made significant advances, and the BERT model has been recognized for its excellent contextual understanding in natural language processing based on the transformer architecture. This performance has the potential to take traditional recommendation systems to the next level. In this study, we adopt an approach that combines a collaborative filtering approach with a deep learning model to improve the performance of recommendation systems. Specifically, we implemented a system that uses BERT to analyze the sentiment of user reviews and embed users based on these review sentiments to find and recommend users with similar tastes. In the process, we also utilized Elasticsearch, an open-source search engine, for quick search and retrieval of recommended results. The approach of analyzing users' textual data to increase the accuracy and personalization of recommendations will play an important role in improving the user experience on various online services in the future.
BERT,collaborative filtering,deep learning,embed,recommendation system