:: The Journal of the Institute of Internet, Broadcasting and Communication ::, Vol.24 No.5 | (2024) pp.19~24

이미지와 텍스트 정보를 활용한 인공지능 기반 산불 탐지 방법

Jae-Hyun Jun

(정회원, ㈜스피어에이엑스)

Chang-Seob Yun

(준회원, ㈜스피어에이엑스)

Yun-Ha Park

(준회원, ㈜스피어에이엑스)

Abstract

전 지구적인 기후변화는 장기간에 걸친 온도 상승, 강우량의 변화 등으로 전 세계적으로 자연재해가 증가하고 있다. 그 중 산불의 발생은 점차 대형화되고 있는 추세이다. 대한민국은 10년(2013~2022년)동안 평균 537건의 산불이 발생하여 3,560ha의 산림이 소실되었으며, 이것은 매년 1,180개의 축구장 면적(약 3ha)의 산림이 타고 있는 것이다. 본 논문은 이미지와 텍스트 정보를 활용한 인공지능 기반 산불 탐지 방법을 제안한다. 제안 방법은 YOLOv9-C, RT-DETR-Res50, RT-DETR-L, YOLO-World-S 방법과 mAP50, mAP75, FPS에 대해 성능을 비교하였으며, 타 방 법보다 높은 성능을 가진 것을 확인하였다. 제안 방법은 강원특별자치도에 산불조기감지 시스템의 산불탐지 모델로 실증 하였으며, 추후 산림지역 뿐만 아니라 도시지역도 포함할 수 있는 화재탐지 방향으로 고도화할 계획이다.
Global climate change is causing an increase in natural disasters around the world due to long-term temperature increases and changes in rainfall. Among them, forest fires are becoming increasingly large. South Korea experienced an average of 537 forest fires over a 10-year period (2013-2022), burning 3,560 hectares of forest. That's 1,180 soccer fields(approximately 3 hectares) of forest burning every year. This paper proposed an artificial intelligence based wildfire detection method using image and text information. The performance of the proposed method was compared with YOLOv9-C, RT-DETR-Res50, RT-DETR-L, and YOLO-World-S methods for mAP50, mAP75, and FPS, and it was confirmed that the proposed method has higher performance than other methods. The proposed method was demonstrated as a forest fire detection model of the early forest fire detection system in the Gangwon State, and it is planned to be advanced in the direction of fire detection that can include not only forest areas but also urban areas in the future.
  Artificial Intelligence,Classifiation,Contrastive Language–Image Pre-training,Forest,Wildfire Detection,You Only Look Once

Download PDF List