:: The Journal of the Institute of Internet, Broadcasting and Communication ::, Vol.23 No.3 | (2023) pp.45~50

딥러닝 기반 품종 및 감정인식 SNS를 포함하는 애완동물 관리 시스템 구현

Inhwan Jung

(정회원, 한성대학교 컴퓨터공학부)

Kitae Hwang

(정회원, 한성대학교 컴퓨터공학부)

Jae-Moon Lee

(정회원, 한성대학교 컴퓨터공학부)


최근 몇 년간 애완동물 소유 비율이 꾸준히 증가함에 따라 효과적인 애완동물 관리 시스템의 필요성이 커졌다. 본 연구에서는 딥러닝 기반 감정인식 SNS를 포함하는 애완동물 관리 시스템을 제안한다. 시스템은 합성곱 신경망(CNN) 을 이용하여 애완동물의 표정을 통해 감정을 감지하고, SNS를 통해 사용자 커뮤니티와 공유된다. SNS를 통해 애완동물 주인들은 다른 사용자들과 연결되어 자신의 경험을 공유하고, 애완동물 관리에 대한 지원과 조언을 받을 수 있다. 또한, 시스템은 애완동물 건강 추적 및 예방접종 및 예약 알림 등의 기능을 포함하여 종합적인 애완동물 관리를 제공한다. 이에 더하여, 시스템은 애완동물 산책 기록을 관리하고 공유하는 기능을 추가하여 애완동물 주인들이 자신의 애완동물과 함께한 산책 기록을 다른 사용자들과 공유할 수 있다. 본 연구는 인공지능 기술을 활용하여 애완동물 관리 시스템을 개선하여 애완동물과 그 주인의 복지를 향상시키는 가능성을 보여주고 있다.
As the ownership of pets has steadily increased in recent years, the need for an effective pet management system has grown. In this study, we propose a pet management system with a deep learning-based emotion recognition SNS. The system detects emotions through pet facial expressions using a convolutional neural network (CNN) and shares them with a user community through SNS. Through SNS, pet owners can connect with other users, share their experiences, and receive support and advice for pet management. Additionally, the system provides comprehensive pet management, including tracking pet health and vaccination and reservation reminders. Furthermore, we added a function to manage and share pet walking records so that pet owners can share their walking experiences with other users. This study demonstrates the potential of utilizing AI technology to improve pet management systems and enhance the well-being of pets and their owners.
  Pet management system,Deep learning,Emotion recognition,SNS,CNN

Download PDF List