:: The Journal of the Institute of Internet, Broadcasting and Communication ::, Vol.18 No.6 | (2018) pp.259~268

K-MEANS 알고리즘을 이용한 인지 재활 훈련 방법의 개선

Ha-Yeon Cho

(준회원, 한국산업기술대학교, 컴퓨터공학과)

Hyeok-Min Lee

(준회원, 한국산업기술대학교, 컴퓨터공학과)

Ho-Sang Moon

(준회원, 한국산업기술대학교, 컴퓨터공학과)

Sung-Wook Shin

(정회원, 한국산업기술대학교, 컴퓨터공학과)

Sung-Taek Chung

(정회원, 한국산업기술대학교, 컴퓨터공학과)

Abstract

본 연구의 목적은 인지기능 훈련 콘텐츠들을 사용하는 동안 사용자들의 흥미와 몰입도를 높이기 위하여 인지 능력 수준에 맞춘 훈련 방법을 제시하는 것이다. 사용자의 인지 능력 수준은 K-means 알고리즘을 적용한 협업 필터링을 사용하여 사용자들의 정보와 한국형 아동 간이 정신 상태 검사 점수를 기반으로 군집화한 결과를 바탕으로 이루어졌다. 이 결과를 구현된 인지기능 훈련 통합 시스템에 적용하여 사용자의 인지 능력 수준에 알맞은 인지기능 훈련 영역 별 콘텐츠 순서와 난이도를 추천하였다. 특히 콘텐츠 난이도 조절은 사용자들이 긴장감과 편안함을 반복적으로 느낄 수 있도록 제안한 '몰입이 론' 방법을 적용하여 높은 몰입감을 주고자 하였다. 결론적으로 본 논문에서 제안한 사용자 맞춤형 인지기능 훈련 방법은 기존의 치료사가 콘텐츠 순서와 난이도를 주관적으로 설정하는 것보다 더욱 효과적이고 재활 결과를 기대할 수 있을 것이다.
The purpose of this study is to propose a training method customized to the level of cognitive abilities to increase users' interest and engagement while using cognitive function training contents. The level of cognitive ability of the users was based on the clustering based on the users' information and Mini-Mental Statue Examination-Korea Child test score using the K-means algorithm applied collaborative filtering. The results were applied to the integrated cognitive function training system, and the contents order and difficulty level of the cognitive function training area were recommended to the user 's cognitive ability level. Particularly, the contents difficulty control was designed to give a high immersion feeling by applying the 'flow theory' method that users can repeatedly feel tension and comfort. In conclusion, the user-customized cognitive function training method proposed in this paper can be expected to be more effective and rehabilitative results than existing therapists' subjective setting of contents order and difficulty level.
  Cognitive Function; K-means Algorithm; Collaborative Filtering; Flow Theory

Download PDF List