:: The Journal of the Institute of Internet, Broadcasting and Communication ::, Vol.18 No.5 | (2018) pp.147~153

비콘을 사용한 ANN기반 적응형 거리 측정

Jiwoo Noh

(정회원, 전북대학교 소프트웨어공학과)

Taeyeong Kim

(정회원, 전북대학교 소프트웨어공학과)

Suntae Kim

(정회원, 전북대학교 소프트웨어공학과)

Jeong-Hyu Lee

(정회원, 전북대학교 소프트웨어공학과)

Hee-Kyung Yoo

(정회원, 강원대학교 컴퓨터공학과)

Yungu Kang

(정회원, 유저인사이트)


저전력 블루투스(BLE; Bluetooth Low Energy) 기술을 사용한 비콘은 실외에서만 위치 측위가 가능한 GPS(Global Positioning System)와 달리 실내에서도 위치 파악이 가능하다. 비콘을 사용한 실내 거리 측정에는 RSSI(Received Signal Strength Indication)값이 핵심 요소인데 그에 반해 RSSI값은 여러 환경요소로부터 영향을 받기 때문에 예측된 거리와 실제 거리의 오차가 크게 나타난다. 이러한 이슈를 다루기 위해 비콘을 사용한 ANN(Artificial Neural Network)기반 적응형 거리 측정을 제안한다. 먼저 RSSI의 잡음을 줄이기 위해 확장 칼만 필터와 신호 안정화 필터를 사용한 전처리 과정을 거친다. 그리고 각각 특정 학습 데이터 셋을 가진 다층 ANN들은 학습을 거치게 된다. 결과에서는 평균오차 0.67m를 보여주고, 0.78의 precision을 보여준다.
Beacon enables one to measure distance indoors based on low-power Bluetooth low energy (BLE) technology, while GPS (Global Positioning System) only can be used outdoors. In measuring indoor distance using Beacon, RSSI (Received Signal Strength Indication) is considered as the one of the key factors, however, it is influenced by various environmental factors so that it causes the huge gap between the estimated distance and the real. In order to handle this issue, we propose the adaptive ANN (Artificial Neural Network) based approach to measuring the exact distance using Beacon. First, we has carried out the preprocessing of the RSSI signals by applying the extended Kalman filter and the signal stabilization filter into decreasing the noise. Then, we suggest the multi-layered ANNs, each of which layer is learned by specific training data sets. The results showed an average error of 0.67m, a precision of 0.78.
  Artificial Neural Networks; Adaptive Distance Measurement; Beacons; Extended Kalman Filter

Download PDF List