:: The Journal of the Institute of Internet, Broadcasting and Communication ::, Vol.18 No.4 | (2018) pp.13~18

기계학습 클러스터링을 이용한 승하차 패턴에 따른 서울시 지하철역 분류

Meekyung Min

(정회원, 서경대학교 컴퓨터과학과)


본 연구에서는 기계학습을 이용하여 서울시 지하철역의 승하차 패턴에 따라 지하철역을 분류한다. 대상 데이터는 공공데이터 포탈에서 제공하는 2008년부터 2017년까지 서울 지하철 233개 역에서의 매일 매시간별 승차객 숫자와 하차객 숫자이다. 기계학습 기법으로는 가우시안 혼합 모델(GMM)과 K-평균 클러스터링을 사용한다. 이용객의 승차시간과 하차시간의 분포는 가우시안 혼합 모델로 모델링할 수 있으며, 이를 K-평균 클러스터링을 이용하여 비지도학습시킨다. 학습결과 서울시 지하철역은 승하차 패턴에 따라 4개의 그룹으로 분류되었다. 본 연구의 결과는 서울시 지하철역의 특성을 파악하여 경제, 사회, 문화적으로 분석하기 위한 주요 기반 지식으로 활용될 수 있다. 본 연구의 방법은 클러스터링이 필요한 모든 공공데이터나 빅데이터에 적용할 수 있다.
In this study, we classify Seoul metro stations according to boarding and alighting patterns using machine earning technique. The target data is the number of boarding and alighting passengers per hour every day at 233 subway stations from 2008 to 2017 provided by the public data portal. Gaussian mixture model (GMM) and K-means clustering are used as machine learning techniques in order to classify subway stations. The distribution of the boarding time and the alighting time of the passengers can be modeled by the Gaussian mixture model. K-means clustering algorithm is used for unsupervised learning based on the data obtained by GMM modeling. As a result of the research, Seoul metro stations are classified into four groups according to boarding and alighting patterns. The results of this study can be utilized as a basic knowledge for analyzing the characteristics of Seoul subway stations and analyzing it economically, socially and culturally. The method of this research can be applied to public data and big data in areas requiring clustering.
  Machine Learning; Public Data; Seoul Metro Station; GMM; K-means Clustering

Download PDF List